Deep Poisson gamma dynamical systems

NeurIPS 2018  ·  Dandan Guo, Bo Chen, Hao Zhang, Mingyuan Zhou ·

We develop deep Poisson-gamma dynamical systems (DPGDS) to model sequentially observed multivariate count data, improving previously proposed models by not only mining deep hierarchical latent structure from the data, but also capturing both first-order and long-range temporal dependencies. Using sophisticated but simple-to-implement data augmentation techniques, we derived closed-form Gibbs sampling update equations by first backward and upward propagating auxiliary latent counts, and then forward and downward sampling latent variables. Moreover, we develop stochastic gradient MCMC inference that is scalable to very long multivariate count time series. Experiments on both synthetic and a variety of real-world data demonstrate that the proposed model not only has excellent predictive performance, but also provides highly interpretable multilayer latent structure to represent hierarchical and temporal information propagation.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here