Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics

30 Jul 2017  ·  Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E ·

We introduce a scheme for molecular simulations, the Deep Potential Molecular Dynamics (DeePMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is "first principle-based" in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DeePMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here