Deep Q-Learning for Self-Organizing Networks Fault Management and Radio Performance Improvement

10 Jul 2017  ·  Faris B. Mismar, Brian L. Evans ·

We propose an algorithm to automate fault management in an outdoor cellular network using deep reinforcement learning (RL) against wireless impairments. This algorithm enables the cellular network cluster to self-heal by allowing RL to learn how to improve the downlink signal to interference plus noise ratio through exploration and exploitation of various alarm corrective actions... The main contributions of this paper are to 1) introduce a deep RL-based fault handling algorithm which self-organizing networks can implement in a polynomial runtime and 2) show that this fault management method can improve the radio link performance in a realistic network setup. Simulation results show that our proposed algorithm learns an action sequence to clear alarms and improve the performance in the cellular cluster better than existing algorithms, even against the randomness of the network fault occurrences and user movements. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here