Deep Regression on Manifolds: A 3D Rotation Case Study

30 Mar 2021  ·  Romain Brégier ·

Many machine learning problems involve regressing variables on a non-Euclidean manifold -- e.g. a discrete probability distribution, or the 6D pose of an object. One way to tackle these problems through gradient-based learning is to use a differentiable function that maps arbitrary inputs of a Euclidean space onto the manifold. In this paper, we establish a set of desirable properties for such mapping, and in particular highlight the importance of pre-images connectivity/convexity. We illustrate these properties with a case study regarding 3D rotations. Through theoretical considerations and methodological experiments on a variety of tasks, we review various differentiable mappings on the 3D rotation space, and conjecture about the importance of their local linearity. We show that a mapping based on Procrustes orthonormalization generally performs best among the mappings considered, but that a rotation vector representation might also be suitable when restricted to small angles.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods