Deep Reinforcement Learning for Trading

22 Nov 2019  ·  Zihao Zhang, Stefan Zohren, Stephen Roberts ·

We adopt Deep Reinforcement Learning algorithms to design trading strategies for continuous futures contracts. Both discrete and continuous action spaces are considered and volatility scaling is incorporated to create reward functions which scale trade positions based on market volatility. We test our algorithms on the 50 most liquid futures contracts from 2011 to 2019, and investigate how performance varies across different asset classes including commodities, equity indices, fixed income and FX markets. We compare our algorithms against classical time series momentum strategies, and show that our method outperforms such baseline models, delivering positive profits despite heavy transaction costs. The experiments show that the proposed algorithms can follow large market trends without changing positions and can also scale down, or hold, through consolidation periods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods