Deep Spatial Learning with Molecular Vibration

14 Nov 2020  ·  Ziyang Zhang, Yingtao Luo ·

Machine learning over-fitting caused by data scarcity greatly limits the application of machine learning for molecules. Due to manufacturing processes difference, big data is not always rendered available through computational chemistry methods for some tasks, causing data scarcity problem for machine learning algorithms. Here we propose to extract the natural features of molecular structures and rationally distort them to augment the data availability. This method allows a machine learning project to leverage the powerful fit of physics-informed augmentation for providing significant boost to predictive accuracy. Successfully verified by the prediction of rejection rate and flux of thin film polyamide nanofiltration membranes, with the relative error dropping from 16.34% to 6.71% and the coefficient of determination rising from 0.16 to 0.75, the proposed deep spatial learning with molecular vibration is widely instructive for molecular science. Experimental comparison unequivocally demonstrates its superiority over common learning algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here