Embedded Spectral Descriptors: Learning the point-wise correspondence metric via Siamese neural networks

17 Oct 2017  ·  Zhiyu Sun, Yusen He, Andrey Gritsenko, Amaury Lendasse, Stephen Baek ·

A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace-Beltrami operator have been a popular subject of research for the last decade due to their advantageous properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct similarity measure for non-isometric cases where the metric distortion between the models is large. Hence, they are not reliable for correspondence matching problems when the models are not isometric. In this paper, it is proposed a method to improve the similarity metric of spectral descriptors for correspondence matching problems. We embed a spectral shape descriptor into a different metric space where the Euclidean distance between the elements directly indicates the geometric dissimilarity. We design and train a Siamese neural network to find such an embedding, where the embedded descriptors are promoted to rearrange based on the geometric similarity. We demonstrate our approach can significantly enhance the performance of the conventional spectral descriptors by the simple augmentation achieved via the Siamese neural network in comparison to other state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here