Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding

7 Dec 2021  ·  Yulun Zhang, Matthew C. Fontaine, Amy K. Hoover, Stefanos Nikolaidis ·

We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at:

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here