Deep Text Classification Can be Fooled

26 Apr 2017  ·  Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, Wenchang Shi ·

In this paper, we present an effective method to craft text adversarial samples, revealing one important yet underestimated fact that DNN-based text classifiers are also prone to adversarial sample attack. Specifically, confronted with different adversarial scenarios, the text items that are important for classification are identified by computing the cost gradients of the input (white-box attack) or generating a series of occluded test samples (black-box attack). Based on these items, we design three perturbation strategies, namely insertion, modification, and removal, to generate adversarial samples. The experiment results show that the adversarial samples generated by our method can successfully fool both state-of-the-art character-level and word-level DNN-based text classifiers. The adversarial samples can be perturbed to any desirable classes without compromising their utilities. At the same time, the introduced perturbation is difficult to be perceived.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here