Learning Deep Graph Representations via Convolutional Neural Networks

5 Apr 2020  ·  Wei Ye, Omid Askarisichani, Alex Jones, Ambuj Singh ·

Graph-structured data arise in many scenarios. A fundamental problem is to quantify the similarities of graphs for tasks such as classification. R-convolution graph kernels are positive-semidefinite functions that decompose graphs into substructures and compare them. One problem in the effective implementation of this idea is that the substructures are not independent, which leads to high-dimensional feature space. In addition, graph kernels cannot capture the high-order complex interactions between vertices. To mitigate these two problems, we propose a framework called DeepMap to learn deep representations for graph feature maps. The learned deep representation for a graph is a dense and low-dimensional vector that captures complex high-order interactions in a vertex neighborhood. DeepMap extends Convolutional Neural Networks (CNNs) to arbitrary graphs by generating aligned vertex sequences and building the receptive field for each vertex. We empirically validate DeepMap on various graph classification benchmarks and demonstrate that it achieves state-of-the-art performance.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here