DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks

2 Oct 2017  ·  Divya Gopinath, Guy Katz, Corina S. Pasareanu, Clark Barrett ·

Deep neural networks have become widely used, obtaining remarkable results in domains such as computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, and bio-informatics, where they have produced results comparable to human experts. However, these networks can be easily fooled by adversarial perturbations: minimal changes to correctly-classified inputs, that cause the network to mis-classify them. This phenomenon represents a concern for both safety and security, but it is currently unclear how to measure a network's robustness against such perturbations. Existing techniques are limited to checking robustness around a few individual input points, providing only very limited guarantees. We propose a novel approach for automatically identifying safe regions of the input space, within which the network is robust against adversarial perturbations. The approach is data-guided, relying on clustering to identify well-defined geometric regions as candidate safe regions. We then utilize verification techniques to confirm that these regions are safe or to provide counter-examples showing that they are not safe. We also introduce the notion of targeted robustness which, for a given target label and region, ensures that a NN does not map any input in the region to the target label. We evaluated our technique on the MNIST dataset and on a neural network implementation of a controller for the next-generation Airborne Collision Avoidance System for unmanned aircraft (ACAS Xu). For these networks, our approach identified multiple regions which were completely safe as well as some which were only safe for specific labels. It also discovered several adversarial perturbations of interest.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here