DeepScale: Online Frame Size Adaptation for Multi-object Tracking on Smart Cameras and Edge Servers

22 Jul 2021  ·  Keivan Nalaie, Renjie Xu, Rong Zheng ·

In surveillance and search and rescue applications, it is important to perform multi-target tracking (MOT) in real-time on low-end devices. Today's MOT solutions employ deep neural networks, which tend to have high computation complexity. Recognizing the effects of frame sizes on tracking performance, we propose DeepScale, a model agnostic frame size selection approach that operates on top of existing fully convolutional network-based trackers to accelerate tracking throughput. In the training stage, we incorporate detectability scores into a one-shot tracker architecture so that DeepScale can learn representation estimations for different frame sizes in a self-supervised manner. During inference, it can adapt frame sizes according to the complexity of visual contents based on user-controlled parameters. To leverage computation resources on edge servers, we propose two computation partition schemes tailored for MOT, namely, edge server only with adaptive frame-size transmission and edge server-assisted tracking. Extensive experiments and benchmark tests on MOT datasets demonstrate the effectiveness and flexibility of DeepScale. Compared to a state-of-the-art tracker, DeepScale++, a variant of DeepScale achieves 1.57X accelerated with only moderate degradation ~2.3\ in tracking accuracy on the MOT15 dataset in one configuration. We have implemented and evaluated DeepScale++ and the proposed computation partition schemes on a small-scale testbed consisting of an NVIDIA Jetson TX2 board and a GPU server. The experiments reveal non-trivial trade-offs between tracking performance and latency compared to server-only or smart camera-only solutions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here