DeepSIP: A System for Predicting Service Impact of Network Failure by Temporal Multimodal CNN

24 Mar 2020Yoichi MatsuoTatsuaki KimuraKen Nishimatsu

When a failure occurs in a network, network operators need to recognize service impact, since service impact is essential information for handling failures. In this paper, we propose Deep learning based Service Impact Prediction (DeepSIP), a system to predict the time to recovery from the failure and the loss of traffic volume due to the failure in a network element using a temporal multimodal convolutional neural network (CNN)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet