DeepTagRec: A Content-cum-User based Tag Recommendation Framework for Stack Overflow

In this paper, we develop a content-cum-user based deep learning framework DeepTagRec to recommend appropriate question tags on Stack Overflow. The proposed system learns the content representation from question title and body. Subsequently, the learnt representation from heterogeneous relationship between user and tags is fused with the content representation for the final tag prediction. On a very large-scale dataset comprising half a million question posts, DeepTagRec beats all the baselines; in particular, it significantly outperforms the best performing baseline T agCombine achieving an overall gain of 60.8% and 36.8% in precision@3 and recall@10 respectively. DeepTagRec also achieves 63% and 33.14% maximum improvement in exact-k accuracy and top-k accuracy respectively over TagCombine

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here