DeepTurbo: Deep Turbo Decoder

6 Mar 2019  ·  Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath ·

Present-day communication systems routinely use codes that approach the channel capacity when coupled with a computationally efficient decoder. However, the decoder is typically designed for the Gaussian noise channel and is known to be sub-optimal for non-Gaussian noise distribution. Deep learning methods offer a new approach for designing decoders that can be trained and tailored for arbitrary channel statistics. We focus on Turbo codes and propose DeepTurbo, a novel deep learning based architecture for Turbo decoding. The standard Turbo decoder (Turbo) iteratively applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with an interleaver in the middle. A neural architecture for Turbo decoding termed (NeuralBCJR), was proposed recently. There, the key idea is to create a module that imitates the BCJR algorithm using supervised learning, and to use the interleaver architecture along with this module, which is then fine-tuned using end-to-end training. However, knowledge of the BCJR algorithm is required to design such an architecture, which also constrains the resulting learned decoder. Here we remedy this requirement and propose a fully end-to-end trained neural decoder - Deep Turbo Decoder (DeepTurbo). With novel learnable decoder structure and training methodology, DeepTurbo reveals superior performance under both AWGN and non-AWGN settings as compared to the other two decoders - Turbo and NeuralBCJR. Furthermore, among all the three, DeepTurbo exhibits the lowest error floor.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here