Defective Convolutional Layers Learn Robust CNNs

ICLR 2020 Anonymous

Robustness of convolutional neural networks has recently been highlighted by the adversarial examples, i.e., inputs added with well-designed perturbations which are imperceptible to humans but can cause the network to give incorrect outputs. Recent research suggests that the noises in adversarial examples break the textural structure, which eventually leads to wrong predictions by convolutional neural networks... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet