Defending against adversarial attacks on medical imaging AI system, classification or detection?

Medical imaging AI systems such as disease classification and segmentation are increasingly inspired and transformed from computer vision based AI systems. Although an array of adversarial training and/or loss function based defense techniques have been developed and proved to be effective in computer vision, defending against adversarial attacks on medical images remains largely an uncharted territory due to the following unique challenges: 1) label scarcity in medical images significantly limits adversarial generalizability of the AI system; 2) vastly similar and dominant fore- and background in medical images make it hard samples for learning the discriminating features between different disease classes; and 3) crafted adversarial noises added to the entire medical image as opposed to the focused organ target can make clean and adversarial examples more discriminate than that between different disease classes... (read more)

Results in Papers With Code
(↓ scroll down to see all results)