Towards Defeating Misclassification Attacks Against Transfer Learning

29 Aug 2019Bang WuShuo WangXingliang YuanCong WangCarsten RudolphXiangwen Yang

Transfer learning is prevalent as a technique to efficiently generate new models (Student models) based on the knowledge transferred from a pre-trained model (Teacher model). However, Teacher models are often publicly available for sharing and reuse, which inevitably introduces vulnerability to trigger severe attacks against transfer learning systems... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet