Deformable Generator Network: Unsupervised Disentanglement of Appearance and Geometry

16 Jun 2018  ·  Xianglei Xing, Ruiqi Gao, Tian Han, Song-Chun Zhu, Ying Nian Wu ·

We present a deformable generator model to disentangle the appearance and geometric information for both image and video data in a purely unsupervised manner. The appearance generator network models the information related to appearance, including color, illumination, identity or category, while the geometric generator performs geometric warping, such as rotation and stretching, through generating deformation field which is used to warp the generated appearance to obtain the final image or video sequences. Two generators take independent latent vectors as input to disentangle the appearance and geometric information from image or video sequences. For video data, a nonlinear transition model is introduced to both the appearance and geometric generators to capture the dynamics over time. The proposed scheme is general and can be easily integrated into different generative models. An extensive set of qualitative and quantitative experiments shows that the appearance and geometric information can be well disentangled, and the learned geometric generator can be conveniently transferred to other image datasets to facilitate knowledge transfer tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here