Deformable kernel networks for guided depth map upsampling

27 Mar 2019  ·  Beomjun Kim, Jean Ponce, Bumsub Ham ·

We address the problem of upsampling a low-resolution (LR) depth map using a registered high-resolution (HR) color image of the same scene. Previous methods based on convolutional neural networks (CNNs) combine nonlinear activations of spatially-invariant kernels to estimate structural details from LR depth and HR color images, and regress upsampling results directly from the networks. In this paper, we revisit the weighted averaging process that has been widely used to transfer structural details from hand-crafted visual features to LR depth maps. We instead learn explicitly sparse and spatially-variant kernels for this task. To this end, we propose a CNN architecture and its efficient implementation, called the deformable kernel network (DKN), that outputs sparse sets of neighbors and the corresponding weights adaptively for each pixel. We also propose a fast version of DKN (FDKN) that runs about 17 times faster (0.01 seconds for a HR image of size 640 x 480). Experimental results on standard benchmarks demonstrate the effectiveness of our approach. In particular, we show that the weighted averaging process with 3 x 3 kernels (i.e., aggregating 9 samples sparsely chosen) outperforms the state of the art by a significant margin.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here