DEFT 2020 - Extraction d'information fine dans les donn\'ees cliniques : terminologies sp\'ecialis\'ees et graphes de connaissance (Fine-grained Information Extraction in Clinical Data : Dedicated Terminologies and Knowledge Graphs )

JEPTALNRECITAL 2020 Thomas LemaitreCamille GossetMathieu LafourcadeNamrata PatelGuilhem Mayoral

Nous pr{\'e}sentons dans cet article notre approche {\`a} base de r{\`e}gles con{\c{c}}ue pour r{\'e}pondre {\`a} la t{\^a}che 3 de la campagne d{'}{\'e}valuation DEFT 2020. Selon le type d{'}information {\`a} extraire, nous construisons (1) une terminologie sp{\'e}cialis{\'e}e {\`a} partir de ressources m{\'e}dicales et (2) un graphe orient{\'e} bas{\'e} sur les informations extraites de la base de connaissances g{\'e}n{\'e}raliste et de grande taille - JeuxDeMots...

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet