Demonstrating Analog Inference on the BrainScaleS-2 Mobile System

We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of 192uJ for the ASIC and achieve a classification time of 276us per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7${\pm}$0.7)% at (14.0${\pm}$1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here