Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators

ICLR 2020  ·  Reinhard Heckel, Mahdi Soltanolkotabi ·

Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here