Denoising Hyperspectral Image with Non-i.i.d. Noise Structure

1 Feb 2017  ·  Yang Chen, Xiangyong Cao, Qian Zhao, Deyu Meng, Zongben Xu ·

Hyperspectral image (HSI) denoising has been attracting much research attention in remote sensing area due to its importance in improving the HSI qualities. The existing HSI denoising methods mainly focus on specific spectral and spatial prior knowledge in HSIs, and share a common underlying assumption that the embedded noise in HSI is independent and identically distributed (i.i.d.). In real scenarios, however, the noise existed in a natural HSI is always with much more complicated non-i.i.d. statistical structures and the under-estimation to this noise complexity often tends to evidently degenerate the robustness of current methods. To alleviate this issue, this paper attempts the first effort to model the HSI noise using a non-i.i.d. mixture of Gaussians (NMoG) noise assumption, which is finely in accordance with the noise characteristics possessed by a natural HSI and thus is capable of adapting various noise shapes encountered in real applications. Then we integrate such noise modeling strategy into the low-rank matrix factorization (LRMF) model and propose a NMoG-LRMF model in the Bayesian framework. A variational Bayes algorithm is designed to infer the posterior of the proposed model. All involved parameters can be recursively updated in closed-form. Compared with the current techniques, the proposed method performs more robust beyond the state-of-the-arts, as substantiated by our experiments implemented on synthetic and real noisy HSIs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here