Density Estimation via Bayesian Inference Engines

14 Sep 2020  ·  M. P. Wand, J. C. F. Yu ·

We explain how effective automatic probability density function estimates can be constructed using contemporary Bayesian inference engines such as those based on no-U-turn sampling and expectation propagation. Extensive simulation studies demonstrate that the proposed density estimates have excellent comparative performance and scale well to very large sample sizes due to a binning strategy. Moreover, the approach is fully Bayesian and all estimates are accompanied by pointwise credible intervals. An accompanying package in the R language facilitates easy use of the new density estimates.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here