Dependency Aware Filter Pruning

6 May 2020Kai ZhaoXin-Yu ZhangQi HanMing-Ming Cheng

Convolutional neural networks (CNNs) are typically over-parameterized, bringing considerable computational overhead and memory footprint in inference. Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.