Dependency Grammar Induction with Neural Lexicalization and Big Training Data

EMNLP 2017 Wenjuan HanYong JiangKewei Tu

We study the impact of big models (in terms of the degree of lexicalization) and big data (in terms of the training corpus size) on dependency grammar induction. We experimented with L-DMV, a lexicalized version of Dependency Model with Valence and L-NDMV, our lexicalized extension of the Neural Dependency Model with Valence... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.