Depth-Optimized Delay-Aware Tree (DO-DAT) for Virtual Network Function Placement

2 Jun 2020  ·  Dimitrios Michael Manias, Hassan Hawilo, Manar Jammal, Abdallah Shami ·

With the constant increase in demand for data connectivity, network service providers are faced with the task of reducing their capital and operational expenses while ensuring continual improvements to network performance. Although Network Function Virtualization (NFV) has been identified as a solution, several challenges must be addressed to ensure its feasibility. In this paper, we present a machine learning-based solution to the Virtual Network Function (VNF) placement problem. This paper proposes the Depth-Optimized Delay-Aware Tree (DO-DAT) model by using the particle swarm optimization technique to optimize decision tree hyper-parameters. Using the Evolved Packet Core (EPC) as a use case, we evaluate the performance of the model and compare it to a previously proposed model and a heuristic placement strategy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here