Depth Uncertainty Networks for Active Learning

In active learning, the size and complexity of the training dataset changes over time. Simple models that are well specified by the amount of data available at the start of active learning might suffer from bias as more points are actively sampled. Flexible models that might be well suited to the full dataset can suffer from overfitting towards the start of active learning. We tackle this problem using Depth Uncertainty Networks (DUNs), a BNN variant in which the depth of the network, and thus its complexity, is inferred. We find that DUNs outperform other BNN variants on several active learning tasks. Importantly, we show that on the tasks in which DUNs perform best they present notably less overfitting than baselines.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here