Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks

ICML 2017 Itay SafranOhad Shamir

We provide several new depth-based separation results for feed-forward neural networks, proving that various types of simple and natural functions can be better approximated using deeper networks than shallower ones, even if the shallower networks are much larger. This includes indicators of balls and ellipses; non-linear functions which are radial with respect to the $L_1$ norm; and smooth non-linear functions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet