Depthwise Non-local Module for Fast Salient Object Detection Using a Single Thread

22 Jan 2020  ·  Haofeng Li, Guanbin Li, BinBin Yang, Guanqi Chen, Liang Lin, Yizhou Yu ·

Recently deep convolutional neural networks have achieved significant success in salient object detection. However, existing state-of-the-art methods require high-end GPUs to achieve real-time performance, which makes them hard to adapt to low-cost or portable devices. Although generic network architectures have been proposed to speed up inference on mobile devices, they are tailored to the task of image classification or semantic segmentation, and struggle to capture intra-channel and inter-channel correlations that are essential for contrast modeling in salient object detection. Motivated by the above observations, we design a new deep learning algorithm for fast salient object detection. The proposed algorithm for the first time achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread. Specifically, we propose a novel depthwise non-local moudule (DNL), which implicitly models contrast via harvesting intra-channel and inter-channel correlations in a self-attention manner. In addition, we introduce a depthwise non-local network architecture that incorporates both depthwise non-local modules and inverted residual blocks. Experimental results show that our proposed network attains very competitive accuracy on a wide range of salient object detection datasets while achieving state-of-the-art efficiency among all existing deep learning based algorithms.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods