Descending, lifting or smoothing: Secrets of robust cost optimization

ECCV 2018 Christopher ZachGuillaume Bourmaud

Robust cost optimization is the challenging task of fitting a large number of parameters to data points containing a significant and unknown fraction of outliers. In this work we identify three classes of deterministic second-order algorithms that are able to tackle this type of optimization problem: direct approaches that aim to optimize the robust cost directly with a second order method, lifting-based approaches that add so called lifting variables to embed the given robust cost function into a higher dimensional space, and graduated optimization methods that solve a sequence of smoothed cost functions... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet