Description Logic EL++ Embeddings with Intersectional Closure

28 Feb 2022  ·  Xi Peng, Zhenwei Tang, Maxat Kulmanov, Kexin Niu, Robert Hoehndorf ·

Many ontologies, in particular in the biomedical domain, are based on the Description Logic EL++. Several efforts have been made to interpret and exploit EL++ ontologies by distributed representation learning. Specifically, concepts within EL++ theories have been represented as n-balls within an n-dimensional embedding space. However, the intersectional closure is not satisfied when using n-balls to represent concepts because the intersection of two n-balls is not an n-ball. This leads to challenges when measuring the distance between concepts and inferring equivalence between concepts. To this end, we developed EL Box Embedding (ELBE) to learn Description Logic EL++ embeddings using axis-parallel boxes. We generate specially designed box-based geometric constraints from EL++ axioms for model training. Since the intersection of boxes remains as a box, the intersectional closure is satisfied. We report extensive experimental results on three datasets and present a case study to demonstrate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here