Designing and Learning Trainable Priors with Non-Cooperative Games

26 Jun 2020Bruno LecouatJean PonceJulien Mairal

We introduce a general framework for designing and learning neural networks whose forward passes can be interpreted as solving convex optimization problems, and whose architectures are derived from an optimization algorithm. We focus on non-cooperative convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet