Designing Differentially Private Estimators in High Dimensions

2 Jun 2020  ·  Aditya Dhar, Jason Huang ·

We study differentially private mean estimation in a high-dimensional setting. Existing differential privacy techniques applied to large dimensions lead to computationally intractable problems or estimators with excessive privacy loss. Recent work in high-dimensional robust statistics has identified computationally tractable mean estimation algorithms with asymptotic dimension-independent error guarantees. We incorporate these results to develop a strict bound on the global sensitivity of the robust mean estimator. This yields a computationally tractable algorithm for differentially private mean estimation in high dimensions with dimension-independent privacy loss. Finally, we show on synthetic data that our algorithm significantly outperforms classic differential privacy methods, overcoming barriers to high-dimensional differential privacy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here