Detecting Correlations with Little Memory and Communication

4 Mar 2018  ·  Yuval Dagan, Ohad Shamir ·

We study the problem of identifying correlations in multivariate data, under information constraints: Either on the amount of memory that can be used by the algorithm, or the amount of communication when the data is distributed across several machines. We prove a tight trade-off between the memory/communication complexity and the sample complexity, implying (for example) that to detect pairwise correlations with optimal sample complexity, the number of required memory/communication bits is at least quadratic in the dimension... Our results substantially improve those of Shamir [2014], which studied a similar question in a much more restricted setting. To the best of our knowledge, these are the first provable sample/memory/communication trade-offs for a practical estimation problem, using standard distributions, and in the natural regime where the memory/communication budget is larger than the size of a single data point. To derive our theorems, we prove a new information-theoretic result, which may be relevant for studying other information-constrained learning problems. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here