Detecting English Speech in the Air Traffic Control Voice Communication

We launched a community platform for collecting the ATC speech world-wide in the ATCO2 project. Filtering out unseen non-English speech is one of the main components in the data processing pipeline. The proposed English Language Detection (ELD) system is based on the embeddings from Bayesian subspace multinomial model. It is trained on the word confusion network from an ASR system. It is robust, easy to train, and light weighted. We achieved 0.0439 equal-error-rate (EER), a 50% relative reduction as compared to the state-of-the-art acoustic ELD system based on x-vectors, in the in-domain scenario. Further, we achieved an EER of 0.1352, a 33% relative reduction as compared to the acoustic ELD, in the unseen language (out-of-domain) condition. We plan to publish the evaluation dataset from the ATCO2 project.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here