Detection of Deep Network Generated Images Using Disparities in Color Components

22 Aug 2018 Haodong Li Bin Li Shunquan Tan Jiwu Huang

With the powerful deep network architectures, such as generative adversarial networks and variational autoencoders, large amounts of photorealistic images can be generated. The generated images, already fooling human eyes successfully, are not initially targeted for deceiving image authentication systems... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet