Determination of the edge of criticality in echo state networks through Fisher information maximization

11 Mar 2016Lorenzo LiviFilippo Maria BianchiCesare Alippi

It is a widely accepted fact that the computational capability of recurrent neural networks is maximized on the so-called "edge of criticality". Once the network operates in this configuration, it performs efficiently on a specific application both in terms of (i) low prediction error and (ii) high short-term memory capacity... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.