Deterministic and Probabilistic Conditions for Finite Completability of Low-rank Multi-View Data

3 Jan 2017  ·  Morteza Ashraphijuo, Xiaodong Wang, Vaneet Aggarwal ·

We consider the multi-view data completion problem, i.e., to complete a matrix $\mathbf{U}=[\mathbf{U}_1|\mathbf{U}_2]$ where the ranks of $\mathbf{U},\mathbf{U}_1$, and $\mathbf{U}_2$ are given. In particular, we investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries for finite completability of such a multi-view data given the corresponding rank constraints. In contrast with the existing analysis on Grassmannian manifold for a single-view matrix, i.e., conventional matrix completion, we propose a geometric analysis on the manifold structure for multi-view data to incorporate more than one rank constraint. We provide a deterministic necessary and sufficient condition on the sampling pattern for finite completability. We also give a probabilistic condition in terms of the number of samples per column that guarantees finite completability with high probability. Finally, using the developed tools, we derive the deterministic and probabilistic guarantees for unique completability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here