Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking

31 May 2017Nathanael L. BaisaAndrew Wallace

We propose a new framework that extends the standard Probability Hypothesis Density (PHD) filter for multiple targets having $N\geq2$ different types based on Random Finite Set theory, taking into account not only background clutter, but also confusions among detections of different target types, which are in general different in character from background clutter. Under Gaussianity and linearity assumptions, our framework extends the existing Gaussian mixture (GM) implementation of the standard PHD filter to create a N-type GM-PHD filter... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet