Differentiable Disentanglement Filter: an Application Agnostic Core Concept Discovery Probe

17 Jul 2019Guntis BarzdinsEduards Sidorovics

It has long been speculated that deep neural networks function by discovering a hierarchical set of domain-specific core concepts or patterns, which are further combined to recognize even more elaborate concepts for the classification or other machine learning tasks. Meanwhile disentangling the actual core concepts engrained in the word embeddings (like word2vec or BERT) or deep convolutional image recognition neural networks (like PG-GAN) is difficult and some success there has been achieved only recently... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet