Differentiable Micro-Mesh Construction

Micro-mesh (u-mesh) is a new graphics primitive for compact representation of extreme geometry consisting of a low-polygon base mesh enriched by per micro-vertex displacement. A new generation of GPUs supports this structure with hardware evolution on u-mesh ray tracing achieving real-time rendering in pixel level geometric details. In this article we present a differentiable framework to convert standard meshes into this efficient format offering a holistic scheme in contrast to the previous stage-based methods. In our construction context a u-mesh is defined where each base triangle is a parametric primitive which is then reparameterized with Laplacian operators for efficient geometry optimization. Our framework offers numerous advantages for high-quality u-mesh production: (i) end-to-end geometry optimization and displacement baking; (ii) enabling the differentiation of renderings with respect to umesh for faithful reprojectability; (iii) high scalability for integrating useful features for u-mesh production and rendering such as minimizing shell volume maintaining the isotropy of the base mesh and visual-guided adaptive level of detail. Extensive experiments on u-mesh construction for a large set of high-resolution meshes demonstrate the superior quality achieved by the proposed scheme.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods