Differentiable reservoir computing

16 Feb 2019  ·  Lyudmila Grigoryeva, Juan-Pablo Ortega ·

Much effort has been devoted in the last two decades to characterize the situations in which a reservoir computing system exhibits the so-called echo state (ESP) and fading memory (FMP) properties. These important features amount, in mathematical terms, to the existence and continuity of global reservoir system solutions... That research is complemented in this paper with the characterization of the differentiability of reservoir filters for very general classes of discrete-time deterministic inputs. This constitutes a novel strong contribution to the long line of research on the ESP and the FMP and, in particular, links to existing research on the input-dependence of the ESP. Differentiability has been shown in the literature to be a key feature in the learning of attractors of chaotic dynamical systems. A Volterra-type series representation for reservoir filters with semi-infinite discrete-time inputs is constructed in the analytic case using Taylor's theorem and corresponding approximation bounds are provided. Finally, it is shown as a corollary of these results that any fading memory filter can be uniformly approximated by a finite Volterra series with finite memory. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods