Differentiable Scheduled Sampling for Credit Assignment

We demonstrate that a continuous relaxation of the argmax operation can be used to create a differentiable approximation to greedy decoding for sequence-to-sequence (seq2seq) models. By incorporating this approximation into the scheduled sampling training procedure (Bengio et al., 2015)--a well-known technique for correcting exposure bias--we introduce a new training objective that is continuous and differentiable everywhere and that can provide informative gradients near points where previous decoding decisions change their value. In addition, by using a related approximation, we demonstrate a similar approach to sampled-based training. Finally, we show that our approach outperforms cross-entropy training and scheduled sampling procedures in two sequence prediction tasks: named entity recognition and machine translation.

PDF Abstract ACL 2017 PDF ACL 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here