Paper

Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis (DWTS) is a technique for neural audio synthesis which learns a dictionary of one-period waveforms i.e. wavetables, through end-to-end training. We achieve high-fidelity audio synthesis with as little as 10 to 20 wavetables and demonstrate how a data-driven dictionary of waveforms opens up unprecedented one-shot learning paradigms on short audio clips. Notably, we show audio manipulations, such as high quality pitch-shifting, using only a few seconds of input audio. Lastly, we investigate performance gains from using learned wavetables for realtime and interactive audio synthesis.

Results in Papers With Code
(↓ scroll down to see all results)