Differential Bayesian Neural Nets

2 Dec 2019  ·  Andreas Look, Melih Kandemir ·

Neural Ordinary Differential Equations (N-ODEs) are a powerful building block for learning systems, which extend residual networks to a continuous-time dynamical system. We propose a Bayesian version of N-ODEs that enables well-calibrated quantification of prediction uncertainty, while maintaining the expressive power of their deterministic counterpart. We assign Bayesian Neural Nets (BNNs) to both the drift and the diffusion terms of a Stochastic Differential Equation (SDE) that models the flow of the activation map in time. We infer the posterior on the BNN weights using a straightforward adaptation of Stochastic Gradient Langevin Dynamics (SGLD). We illustrate significantly improved stability on two synthetic time series prediction tasks and report better model fit on UCI regression benchmarks with our method when compared to its non-Bayesian counterpart.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here