Differential Newborn Face Morphing Attack Detection using Wavelet Scatter Network

2 May 2023  ·  Raghavendra Ramachandra, Sushma Venkatesh, Guoqiang Li, Kiran Raja ·

Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 $\times$ 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here