Differentially Private Empirical Risk Minimization with Input Perturbation

20 Oct 2017  ·  Kazuto Fukuchi, Quang Khai Tran, Jun Sakuma ·

We propose a novel framework for the differentially private ERM, input perturbation. Existing differentially private ERM implicitly assumed that the data contributors submit their private data to a database expecting that the database invokes a differentially private mechanism for publication of the learned model. In input perturbation, each data contributor independently randomizes her/his data by itself and submits the perturbed data to the database. We show that the input perturbation framework theoretically guarantees that the model learned with the randomized data eventually satisfies differential privacy with the prescribed privacy parameters. At the same time, input perturbation guarantees that local differential privacy is guaranteed to the server. We also show that the excess risk bound of the model learned with input perturbation is $O(1/n)$ under a certain condition, where $n$ is the sample size. This is the same as the excess risk bound of the state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here