Dimension-Free Exponentiated Gradient

We present a new online learning algorithm that extends the exponentiated gradient to infinite dimensional spaces. Our analysis shows that the algorithm is implicitly able to estimate the $L_2$ norm of the unknown competitor, $U$, achieving a regret bound of the order of $O(U \log (U T+1))\sqrt{T})$, instead of the standard $O((U^2 +1) \sqrt{T})$, achievable without knowing $U$... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet