Dimension-Free Exponentiated Gradient

NeurIPS 2013  ·  Francesco Orabona ·

We present a new online learning algorithm that extends the exponentiated gradient to infinite dimensional spaces. Our analysis shows that the algorithm is implicitly able to estimate the $L_2$ norm of the unknown competitor, $U$, achieving a regret bound of the order of $O(U \log (U T+1))\sqrt{T})$, instead of the standard $O((U^2 +1) \sqrt{T})$, achievable without knowing $U$. For this analysis, we introduce novel tools for algorithms with time-varying regularizers, through the use of local smoothness. Through a lower bound, we also show that the algorithm is optimal up to $\sqrt{\log T}$ term for linear and Lipschitz losses.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here